
Energiewende <u>und</u> bezahlbare Energie!

Mit einer Wasserstoff-Infrastruktur die Kosten unter das Niveau der heutigen fossilen Energiewirtschaft senken

Echte grüne Wasserstoffwirtschaft

Wasserstoff zum Endverbraucher

Durch den systembedingten Stromüberschuss entsteht eine wärmegeführte Energiewirtschaft, die prinzipiell **verlustfrei** ist.

Effizienz der Energiekette bei Nutzung von Biomasse

Regionale Fabriken 50-500 MW (Privat-Haushalt)

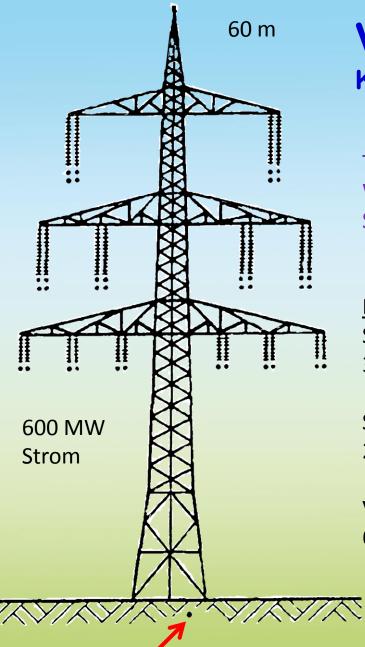
Vergasung 1=84% (Hu) 1=84% (Hu) 1=84% (Hu) 1=84% (Rohrleitung Rohrleitung Rohrleitung Rohrleitung Rohrleitung

Wasserstoff wird bei 25 bar erzeugt und strömt verlustfrei zum Endverbraucher

bis 99% des Heizwertes der Biomasse, davon ca. 50% als Strom (Brennwerttechnik)

Kompetenz der H₂-Patent GmbH Bad Iburg

Smart Grid, Smart Home?



That's all you need

In einer Wasserstoffwirtschaft ist Strom ein Abfallprodukt der Wärme-Erzeugung. Es lohnt sich daher nicht, einen Stromzähler zu installieren.

Der Endverbraucher benötigt weder smarte Geräte noch einen Anschluss an ein smartes Stromnetz.

Verteilung von Energie

Kosten vom Erzeuger zum Haushalt

Transportkosten für Haushaltskunden:

Wasserstoff = 0,7 ct/kWh

Strom = 9,3 ct/kWh (für 2009 genehmigt)

Beispiele für Stromkosten, Haushaltstarif*:

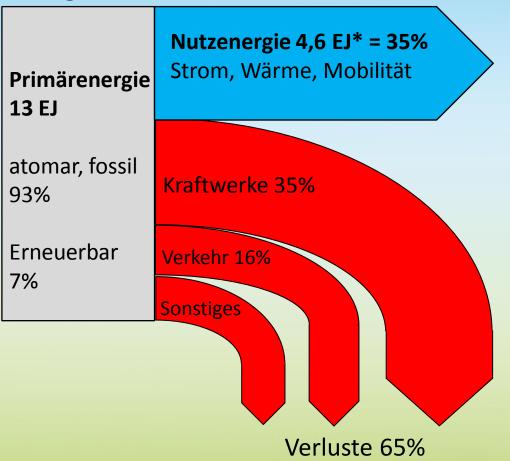
Strom aus eigenen Brennstoffzellen =

3 + 0.7 = 3.7 ct/kWh

Strom aus abgeschriebenen Atomreaktoren =

2 + 9,3 = 11,3 ct/kWh

Vision Wüstenstrom (DESERTEC)


6 + 3 + 9,3 = 18,3 ct/kWh

* ohne Steuern und Abgaben

Energiewirtschaft heute und morgen

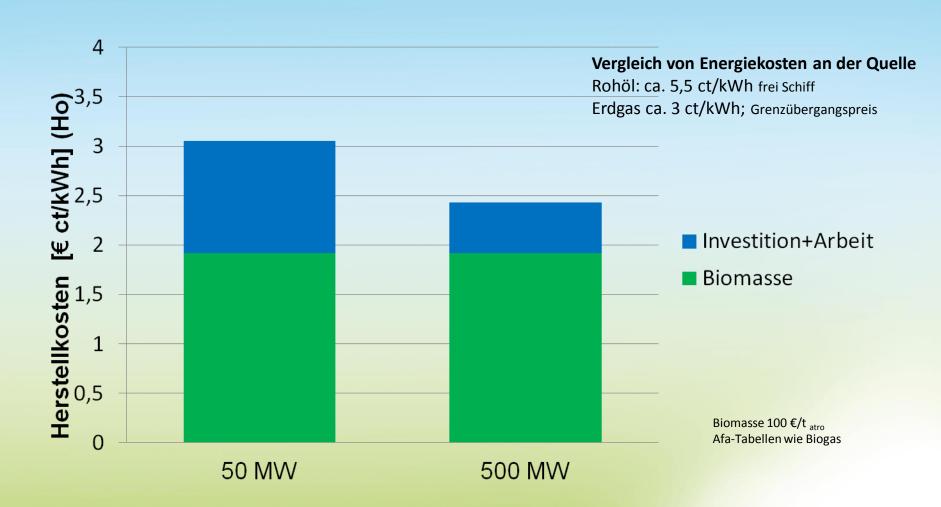
Energiewirtschaft 2007

Energiewirtschaft 2030

Biomasse 70%	Nutzenergie 3 EJ Strom, Wärme, Mobilität

Verluste 13%

Nutzenergie	[EJ]
Ausgangslage 2007	4,6
Trend bis 2030 (Dämmung)	-0,7
Effizienz (Stromüberschuss)	-0,9
Ergebnis 2030	3,0


Auch bei 3 EJ keine Einschränkung beim Energiekomfort

In einer künftigen Wasserstoffwirtschaft sinkt der Primärenergieverbrauch auf ein Viertel – bei gleichem Komfort.

Damit sinken die Energiekosten um den Faktor Vier - mindestens

Herstellkosten für Bio-Wasserstoff

Kostenbeispiele

- Haushaltsstrom ca. 4 ct/kWh
- Haushaltswärme ca. 4 ct/kWh
- PKW-Treibstoff ca. 1 €/100 km
 - Batterie- oder Brennstoffzellen-Auto

ohne Steuern

Investitionen für die neue Wasserstoffwelt in Deutschland

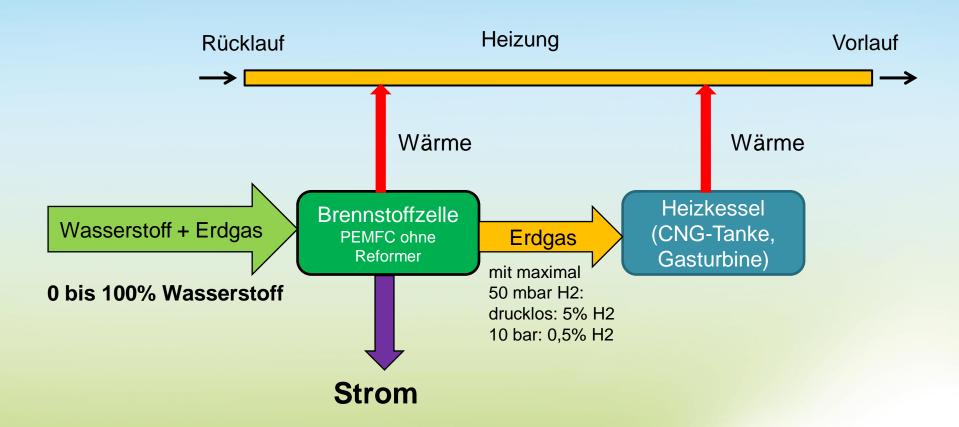
Versorgungsumfang	Wasserstoff-Fabriken [Mrd. €]	Netz [Mrd. €]	∑ [Mrd. €]
75 %	15	5	20
100%	20	20	40


Mit einer einmaligen Investition von 40 Mrd. € wird aus lokalen Ressourcen eine dauerhaft sichere und nachhaltige Energieversorgung geschaffen, zu Preisen, die in allen Marktsektoren niedriger sind als heute.

Zum Vergleich:

- 40 Mrd. €/a investiert der Energiesektor insgesamt (einschl. Zahlungsverpflichtungen)
- >100 Mrd. €/a Energie-Importe (Wertschöpfung bleibt zukünftig im Lande)
- >150 Mrd. €/a Geringere Energiekosten von Industrie und Haushalten
- 20 bis 200 Mrd. €/a Entlastung von sozialen Kosten der Energiegewinnung
- Fehlinvestitionen in Höhe von > >1000 Mrd. € zur Rettung der alten Energiewirtschaft

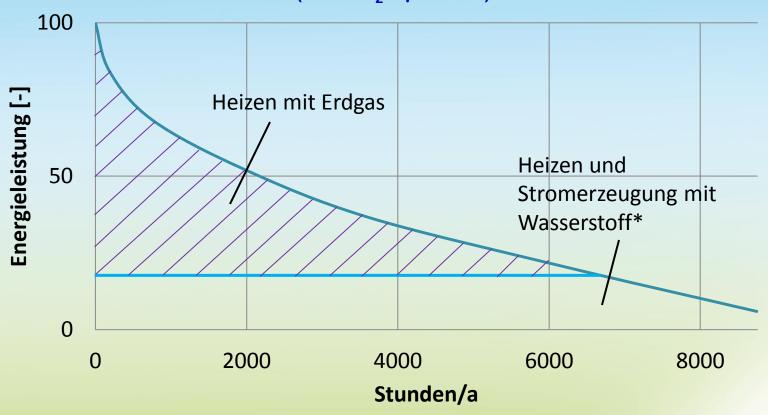
Biomasse Bedarf und Potenzial


100% Selbstversorgung mit Nahrungsmitteln Energie zu 70% aus Biomasse und 30% EE-Strom

Netzstabilität in der Übergangszeit zur Wasserstoffwirtschaft

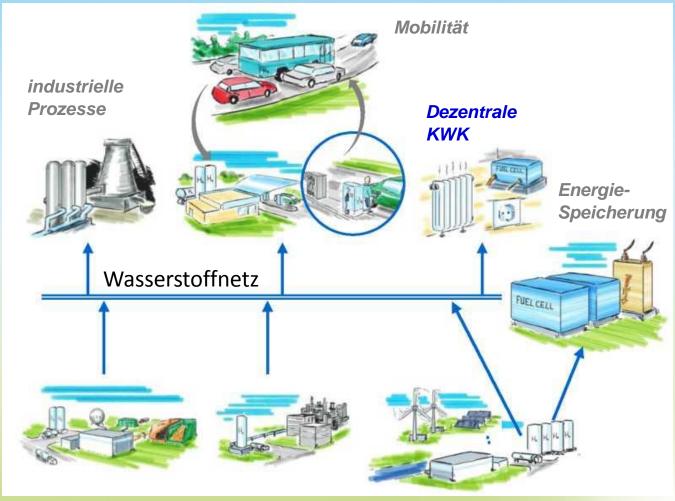
Instabilität durch Nutzerverhalten und fluktuierende Einspeisungen Stromnetz stabilisiert Leistungsschwankungen Endverbraucher mit Brennstoffzellen Elektrolyse **Optional** Schnittstelle 、 speisen Strom in das Netz ein oder (Küstenregion) zu PtG Verluste: ziehen Strom aus dem Netz für den lokal=1% zentral=5-15% sofortigen Verbrauch (verlustlos). H₂-Fabrik Wasserstoffnetz Biomasse als Leichte Druckschwankungen **Stromspeicher Erdgas-Kavernen** H_2 als Stromspeicher

Gestaltung der Übergangszeit mit Mischungen von Erdgas und Wasserstoff



Das Netz verträgt auch reinen Wasserstoff und kann mit Wasserstoff etwa die gleiche Energiemenge transportieren wie mit Erdgas.

Stromerzeugende Heizung


mit Brennstoffzelle und Heizkessel ohne Reformer (ohne H₂-Speicher)

^{*} Export von Überschuss-Strom nach EEG möglich

Regierungsprogramm – NOW 2013

Quelle: Ehret, NOW 28.01.2013

Steam-Reforming Erdgas, Kohle, Biomasse H2 Byproduct Wasser-Elektrolyse

Anwendungszentrum Wasserstoff: Erprobung der Anwendungstechnik

Wasserstoff aus der Alkalichlorid-Elektrolyse

Industriepark Frankfurt-Höchst

Wasserstoff-Leitung

(Infraserve – mainova)

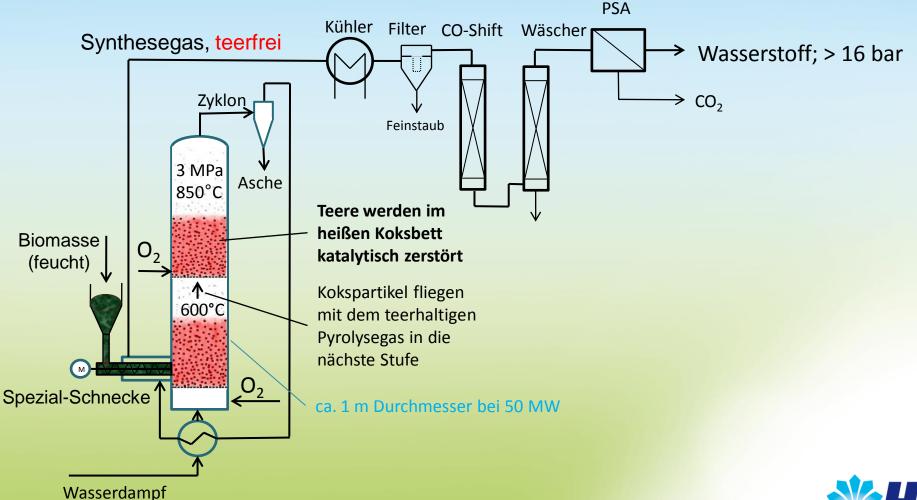
Frankfurter Stadtteile: Höchst + Sindlingen

Bild: Infraserve Hoechst/Wikipedia

Erprobung von:

H2-Tankstelle (vorhanden)

H2-Brennstoffzellen (PEMFC) in öffentlichen u. privaten Einrichtungen Mischbetrieb von H2 und Erdgas mit Endgeräten

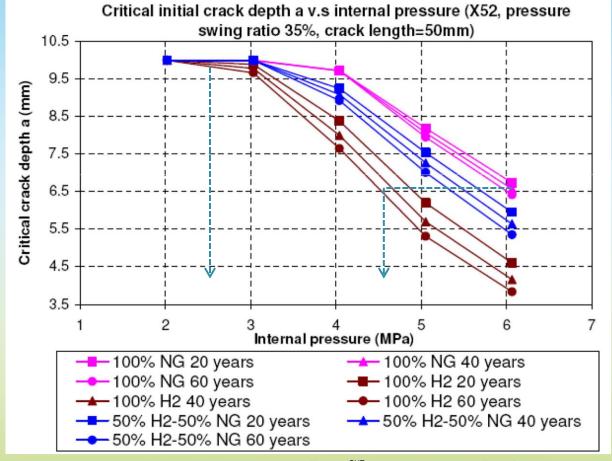

Die gesamte Infrastruktur kann von Hessischen Firmen bereitgestellt werden

Vielen Dank für Ihre Aufmerksamkeit

Herstellung von Wasserstoff mit dem druckaufgeladenen Verfahren der H2-Patent GmbH

aus Biomasse

Spezifische Kosten von Brennstoffzellen


		FC stack/system		FCEV	
Source	Year	# units	FC cost range (average)	# vehicles	Price (kEUR)
McKinsey	2010	1 000	€221-781 (500)/kW - stack		160
	2015	100 000	€42-252 (110)/kW - stack	> 100	
	2020	1 M	€16-98 (43)/kW - stack	< 1 M	31
	2030			20 M	26
MAIP	2010 status		> €1 000/kW -system	> 100	500
	2015 target		€100/kW -system	> 5 000	< 50
	2020 target		€50/kW -system	0.5 M	< 30
DoE 2010	2010	small	\$228/kW - system		
	2010 projected	0.5 M	\$49/kW - system		
	2015 target	0.5 M	\$30/kW - system \$15/kW - stack		
JHFC 2010	2020 target				20 % more than ICE

Source: 2011 Update of the Technology Map for the SET-Plan; EU 2011

Wasserstoff kommt in Erdgasleitungen

Konsequenzen für X52:

- Druck konstant halten
- Absenkung des Drucks um 25%,
- Verkürzung der Inspektionsintervalle,
- Zugabe von 500 ppm O₂,
- Von innen mit Bronze ausspitzen

Eine Wasserstoffwirtschaft ist andererseits eine regionale Gaswirtschaft bei der Drücke über 2,5 MPa (25 bar) nicht benötigt werden. Eine Versprödung von Stählen durch Wasserstoff ist selbst bei diesem sehr spröden Stahl nicht zu erwarten.

Quelle: DBI^{GUT}; aus NATURALHY-Endbericht 2009; DWV; Wasserstoff-Sicherheits-Kompendium 2012

Bei der Umstellung des Erdgasnetzes auf Wasserstoff sinken die Leckverluste von 0,1% auf 0,04% der transportierten Energiemenge. Die Netzkapazität von Erdgas und Wasserstoff ist gleichgroß.

